fx-9860G シリーズ アドインアプリケーション

Physium 取扱説明書

	•	•		•			•	•	•	•	•	٠							•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	٠	•	٠	٠	٠	٠	٠	٠	•	•	٠	•	•	•	٠	
•	•	٠	•	•	٠	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	
•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•
•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•
h	tt	p	:/	/ε	ec	lu	1.0	28	as	sic).	jp)							

目 次

- 1 Physium の概要
- 2 Physium の起動方法
- 3 周期表
- 4 物理定数
- 5 eActivity から Physium を呼び出す
- 6 注意事項

1 Physium の概要

• Physium アプリケーションを使うと、次のことができます。

元素周期表

- 元素周期表を表示します。
- 元素の原子番号、元素記号、原子量などを表示します。
- 元素を元素名、元素記号、原子番号、原子量で検索することができます。

物理定数

- 分類別に物理定数を表示します。
- 物理定数を修正して保存できます。
- 物理定数を変数メモリーへ保存することができます。

2 Physium の起動方法

1. メインメニューから PHYSIUM モードに入ります。

2. 次のような画面が表示されます。

- 3. ③ を押すと、カーソルが移動します。カーソルで「Periodic Table」(周期表)または「Fundamental Physical Constants」(物理定数)を選択します。
- 4. 図を押すと、手順3で選択した画面(「周期表」または「物理定数」)を表示します。

3 周期表

■ 周期表画面

- ・上端に族番号を、左端に周期番号を表示します。
- ランタノイドはL*、アクチノイドはA*と表示します。
- •¹¹³Uut、¹¹⁵Uup、¹¹⁷Uus、¹¹⁸Uuoは「**」で表示します。

FB (DETAIL) (または 堅)....... カーソルで選択した元素の詳細ダイアログを表示します。(L* または A* が選択されている場合は、ランタノイド、またはアクチノイドの画面になります。)

EXTIの最初の画面に戻ります。

● 詳細ダイアログ

- 周期表画面で選択した元素の原子番号、元素記号、元素名、性質、原子量を表示します。
- ・原子量が[]で囲まれているものは同位体のうち、よく知られたものの原子量です。また、 元素名の後ろに*を付けて表示します。

EXTT(または EXE または RAM) …… ダイアログを閉じます。

● ランタノイド、アクチノイド (Lanthanoids、Actinoids) 画面

Lanthanoids		Actinoids	
LEE Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	―_カーソル <i>―</i>	HE Th Pa U Ne Pu Am Cm Bk Cf Es Fm Md No Lr	
DETAIL			DETAIL

- 周期表画面でL* またはA*を選択して、FB(DETAIL)(または EE)を押すと、ラン タノイド、またはアクチノイドの画面になります。

■ 縮小表示画面

- 周期表を縮小してマス目で表示します。
- 右上にカーソルで選択している元素の原子番号、元素記号、原子量を表示します。
- ランタノイド、アクチノイドは周期表の下の欄(LANT、ACTI)に表示します。
- [L] (ランタノイド) を選択すると、原子番号は 57 ~ 71 に、元素記号は Lant. に、原 子量は非表示になります。[A] (アクチノイド)を選択すると、原子番号は 89 ~ 103 に、 元素記号は Acti. に、原子量は非表示になります。

FI (SERIES) FI (METAL)金属元素 (Metals) を網掛け表示します。

	F2 (TRANS)	遷移元素 (Transition Elements) を網掛け表示 します。
	F3 (A-MET)	アルカリ金属 (Alkali Metals) を網掛け表示しま す。
	F4 (A-EAR)	アルカリ土類金属 (Alkaline Earth Metals)を 網掛け表示します。
	F5 (HALGN)	ハロゲン (Halogens) を網掛け表示します。
	F6 (▷) F1 (n-GAS)	希ガス (Noble Gases) を網掛け表示します。
	F6 (▷) F2 (n-METL)	非金属元素 (Non-Metals) を網掛け表示します。
	F6 (▷) F3 (R-EAR)	希土類元素 (Rare Earth Elements) を網掛け表 示します。
F2 (RESET)		. 縮小表示画面の網掛け表示を解除します。
F5 (SRC) F1	(NAME)	. 元素名の検索ダイアログを表示します。
F2	(SYMBL)	.元素記号の検索ダイアログを表示します。
F3	(No.)	.原子番号の検索ダイアログを表示します。
F4	(WEIGH)	.原子量の検索ダイアログを表示します。
F6 (DETAIL))(または 匪)	. カーソルで選択した元素の詳細ダイアログを表示 します。(Lanthanoids または Actinoids が選 択されている場合は、表示されません。) . 周期表画面に戻ります。

● 詳細ダイアログ(縮小表示)

- 周期表画面と同じ詳細ダイアログを表示します。(3-1ページを参照)
- ④ ● で、縮小表示画面のカーソルが移動して、選択した元素の詳細を表示します。(Lant. と Acti. は選択できません。)

3-4 周期表

EXTT(または EXE、 MM)......ダイアログを閉じます。

元素名の検索

- 1. 縮小表示画面で EB (SRC) EI (NAME) と押します。
 - 元素名の検索ダイアログが表示されます。

- 2. 元素名を入力します (9 文字まで)。
 - あてはまる元素名が原子番号順に表示されます。
- 3. (④) ⑦ を押して元素名を選択します。
- 4. 図 を押すと、縮小表示画面に戻り、選択した元素にカーソルが移動します。
- •該当する元素がない場合は、"Nothing"と表示されます。
- EXIT を押すと、ダイアログを閉じて、縮小表示画面に戻ります。

● 元素記号の検索

- 1. 縮小表示画面で F5 (SRC) F2 (SYMBL) と押します。
 - 元素記号の検索ダイアログが表示されます。

- 2. 元素記号を入力します (9 文字まで)。
 - あてはまる元素の元素記号と原子量が、原子番号順に表示されます。
- 3. (④) ⑦ を押して元素記号を選択します。
- 4.
 図を押すと、縮小表示画面に戻り、選択した元素にカーソルが移動します。
- •該当する元素がない場合は、"Nothing"と表示されます。
- EXIT を押すと、ダイアログを閉じて、縮小表示画面に戻ります。

• 原子番号の検索

縮小表示画面で 「55(SRC)」「53(No.)と押します。
 原子番号の検索ダイアログが表示されます。

🗄 Search 🛙
Atomic No.:
ACT-
NAME SYNEL NO. WEIGH

- 2. 原子番号を入力します(数字3桁まで)。
- 3.
 図を押すと、縮小表示画面に戻り、入力した原子番号の元素にカーソルが移動します。
 - 一致する原子番号がない場合は、ダイアログを閉じて縮小表示画面に戻ります。カーソ ル位置は変わりません。
- EXIT を押すと、ダイアログを閉じて、縮小表示画面に戻ります。

•原子量の検索

- 1. 縮小表示画面で FB (SRC) FA (WEIGH) と押します。
 - 原子量の検索ダイアログが表示されます。

Weis Weis He	- Search - ht: 1.002602 6.94	 8 ••••
NAME SYN	BL NO. HEIGH	

- 2. 原子量を入力します(数字と小数点で9桁まで)。
 - あてはまる元素の元素記号と原子量が、原子番号順に表示されます。
- 3. (④) (⑦) を押して元素記号を選択します。
- 4. 図を押すと、縮小表示画面に戻り、選択した元素にカーソルが移動します。
- ・該当する原子量がない場合は、"Nothing"と表示されます。
- EXIT を押すと、ダイアログを閉じて、縮小表示画面に戻ります。

4 物理定数

■ 分野選択画面

Physical Constants

2:Electromagnetic 3:Atomic & nuclear 4:Physico-chemical 5:Adopted values

1:Universal

■ 搭載している定数

• 下記の定数が搭載されています。

分類	定数	定数値
普遍定数	c:真空中の光速	299792458
	μο:真空の透電率	1.2566370614E-6
	εο: 真空の誘電率	8.854187817E-12
	Zo:真空のインピーダンス	376.730313461
	G:万有引力定数	6.67384E-11
	h : プランク定数	6.62606957E-34
	h : ディラック定数	1.054571726E-34
	m₀: プランク質量	2.17651E-8
	Ⅰ₀: プランク長	1.616199E-35
	t。: プランク時間	5.39106E-44
電磁気学定数	e:電気素量	1.602176565E-19
		2.067833758E-15
	Go: コンダクタンス量子	7.7480917346E-5
	K」: ジョセフソン定数	4.8359787E14
	Rκ:フォン・クリッツィング定数	25812.8074434
	μв:ボーア磁子	9.27400968E-24
	μΝ:核磁子	5.05078353E-27

∠\ 米五	÷ *	中粉店
原于核物埋字定致	α:微細構造定数	7.2973525698E-3
	R∞ : リュードベリ定数	10973731.568539
	ao : ボーア半径	5.2917721092E-11
	m₀: 電子の質量	9.10938291E-31
	μe:電子の磁気モーメント	-9.2847643E-24
	m _μ :ミュー粒子の質量	1.883531475E-28
	μμ:ミュー粒子の磁気モーメント	-4.49044807E-26
	Μ _τ :タウ粒子の質量	3.16747E-27
	m₀: 陽子の質量	1.672621777E-27
	μ _p :陽子の磁気モーメント	1.410606743E-26
	mn: 中性子の質量	1.674927351E-27
	μ ո : 中性子の磁気モーメント	-9.6623647E-27
物理化学定数	N₄ : アボガドロ定数	6.02214129E23
	mu:原子質量単位	1.660538921E-27
	F : ファラデー定数	96485.3365
	R: 気体定数	8.3144621
	k:ボルツマン定数	1.3806488E-23
	Vm:理想気体のモル体積	0 0 0 0 7 1 0 0 5 2
	(273.15 K, 100 kPa)	0.022710903
	σ : シュテファン - ボルツマン定数	5.670373E-8
協定値	K」-90:ジョセフソン定数の協定値	483597.9
	Rκ-90:フォン・クリッツィング定数の 協定値	25812.807
	g₁:標準重力加速度	9.80665

4-2 物理定数

■ 定数一覧画面

	Universal
С	=299792458
140	=1.25663706e-6
80	=8.8541878ɛ-12
Zo	=376.7303135
G	=6.67384E-11
h	=6.6260695⊑-34 ↓
EDIT	STORE DETAIL KEEP INIT AIMIT

- ・ 定数を「記号=数値」のように表示します。
- ・
 を押すとカーソルが移動して、定数が選択されます。

「町(EDIT)…………………」選択した定数を訂正します。(数字キーを押しても選択した定数の訂正になります。)

- [2] (STORE)......選択した定数を変数メモリーに保存します。
- F3(DETAIL)(または 20)…選択した定数の詳細ダイアログを表示します。

[4] (KEEP)選択した定数を My Drawer (お気に入り)に保存します。

- FA (KEEP) を押すと"Complete!" メッセージが出ま す。 EVII を押してメッセージを閉じます。
- **F5**(INIT)......選択した定数の値を元の数値に戻します。
- F6 (A・InIT)すべての定数の値を元の数値に戻します。

■ My Drawer (お気に入り) 画面

・定数一覧画面で、「四(KEEP)と押すと、選択した定数が My Drawer(お気に入り)画面 に保存されます。(保存した順に表示します。)

12 (STORE)......選択した定数を変数メモリーに保存します。

🖪 (DETAIL) (または 📼)…選択した定数の詳細ダイアログを表示します。

F6 (DEL)......選択した定数を My Drawer (お気に入り) から削除します。

[37]分類選択画面に戻ります。

■ 定数を訂正する

- 1. 訂正する定数を選択して F1(EDIT)を押します。
 - ・定数の訂正状態になります。

- 2. 定数を訂正します。
- 3. 厩を押します。
- 訂正された定数が保存されます。
- 15 桁以上入力した場合でも、記憶される有効桁数は 15 桁になります。
- ・ 定数の編集状態で入力が正しくない場合は、エラー (Syntax ERROR) になります。
- ・ 定数の編集状態で入力が数学的におかしい場合は、エラー (Ma ERROR) になります。

■ 定数を変数メモリーへ保存する

- 1. 変数メモリーに保存する定数を選択して F2 (STORE)を押します。
 - 保存ダイアログが表示されます。

- 2. 保存する定数をアルファベットで入力します(1文字)。
- 3. 2 を押します。
- 他のモードから変数メモリーを呼び出すと、保存した定数の値が入力されます。

■ 詳細ダイアログ

- 定数を選択して F3 (DETAIL) または E2 を押すと、詳細ダイアログが表示されます。
- 定数の名称、記号、単位を表示します。

■ すべての定数を元の数値に戻す

・定数一覧画面で、F6(A・InIT)を押すと、Init All ダイアログが表示されます。

• F1 (Yes)を押すと、定数一覧画面にあるすべての定数の値を元の数値に戻します。

5-1 eActivity から Physium を呼び出す

5 eActivity から Physium を呼び出す

eActivity では Physium ストリップを入力して、Physium を呼び出すことができます。

ここでは、Physium ストリップの挿入方法、Physium ストリップの使い方を説明します。 eActivity についての詳細は別冊の取扱説明書「第10章 eActivity」を参照してください。

■ eActivity ファイルに Physium ストリップを挿入するには

以下の操作では Physium ストリップを挿入する eActivity ファイルがすでに開いているとします。

• eActivity ファイルに Physium ストリップを挿入するには

- 1. eActivity の作業画面で、Physium ストリップを挿入する位置にカーソルを移動させま す。
- 2. F2 (STRP) を押します。
 - 挿入可能なストリップの一覧がポップアップ表示されます。

3. (④) ⑦ を押して、Physium ストリップを選択します。

4. 匪を押します。

•ストリップがカーソルの1行手前またはカーソルがある行に挿入されます。

PHYSI	
EILE SIRP INS CHAP A⇔A D	•

5. ストリップのタイトルを 16 文字以内で入力します。

5-2 eActivity から Physium を呼び出す

6. 図を押すと、ストリップのタイトルが確定されます。

FILE SISS INS CHAS | A⇔a| D

- •ストリップが選択された状態となります。
- ここで 匪 を押すとストリップを実行します。ストリップを実行する手順は、次の「ストリップから Physium を呼び出すには」を参照してください。

■ ストリップから Physium を呼び出すには

ここでは、eActivity ファイルに挿入した Physium ストリップの操作について説明します。 以下の手順では実行できる Physium ストリップを挿入した eActivity ファイルがすでに開 いているとします。

1. eActivity の作業画面で、 (④) ⑦ を押して Physium ストリップを選択します。

- 2. 厩を押します。
 - Physium が呼び出され、Physium の最初の画面が表示されます。

Periodic Table
& Fundamental Physical
lonslanis Ver. 1.12

- 3. 「Physium の起動方法」(2-1 ページ)の手順3からの操作を行います。
- 4. eActivityの作業画面に戻るには、 Sm ー (音)を押します。

6 注意事項

- Physium の各画面、ダイアログを表示中に、画面のキャプチャーができます。(詳細は、 別冊の取扱説明書「1-8 画面キャプチャー機能」を参照してください。)
- 電卓に搭載されているカタログ機能は、Physium では使えません。
- 原子量は、2013年のIUPAC (International Union of Pure and Applied Chemistry)を元にしています。
- 物理定数は、2010年の CODATA を元にしています。
- 周期表、物理定数の表記や値は、年や書籍によって若干の違いがあります。ご使用の前 に目的にあった資料を参照してください。

CASIO.

カシオ計算機株式会社

〒 151-8543 東京都渋谷区本町 1-6-2

SA1402-E © 2014 CASIO COMPUTER CO., LTD.