fx-CGシリーズ アドインアプリケーション

Physium (周期表と物理定数) **取扱説明書**

		•		•	•		•	•		•	•	•	•	•		•				
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	٠	•	•	•	•	٠	•	٠	٠	•	٠	•	•	٠	•	
•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

http://edu.casio.jp

J

- 1 Physium の概要
- 2 Physium の起動方法
- 3 周期表
- 4 物理定数
- 5 eActivity から Physium を呼び出す
- 6 注意事項

1 Physium の概要

• Physium アプリケーションを使うと、次のことができます。

元素周期表

- 元素周期表を表示します。
- 元素の原子番号、元素記号、原子量などを表示します。
- 元素を元素名、元素記号、原子番号、原子量で検索することができます。
- 元素の原子量を修正できます。
- 元素の原子番号、元素記号、電子配置、原子量を **Spreadsheet** モードのデータに保存 できます。

物理定数

- 分類別に物理定数を表示します。
- 物理定数を修正して保存できます。
- ・物理定数を変数メモリーへ保存して、Run-Matrix モードで使用することができます。

メモ

- 電卓の言語設定に従って、画面メッセージを設定した言語で表示します。
- このアプリケーションは、OS バージョンが 1.03 以上の電卓で動作します。バージョンが 1.03 未満の電卓では動作しません。

2 Physium の起動方法

1. メインメニューから **Physium** モードに入ります。

Physium E-F

2. 次のような画面が表示されます。

- 3.

 ③
 を押すと、カーソルが移動します。カーソルで「Periodic Table」(周期表)また
 は「Fundamental Physical Constants」(物理定数)を選択します。
- 4. 図を押すと、手順3で選択した画面(「周期表」または「物理定数」)を表示します。

3 周期表

- 上端に族番号を、左端に周期番号を表示します。
- ランタノイドはL*、アクチノイドはA*と表示します。
- 周期表の欄外に、カーソルで選択している元素の原子番号、元素記号、原子量を表示し ます。
- ランタノイド、アクチノイドは周期表の下の欄に表示します。
- [L] (ランタノイド) を選択すると、原子番号は 57 ~ 71 に、元素記号は Lant. に、原 子量は非表示になります。[A] (アクチノイド)を選択すると、原子番号は 89 ~ 103 に、 元素記号は Acti. に、原子量は非表示になります。
- 🛆 🕤 🕙 🕞 で、カーソルが移動します。

[FT] (SERIES) [FT] (TRANS)遷移元素 (Transition Elements) をハイライト 表示します。 [F2] (A·METAL).....アルカリ金属 (Alkali Metals) をハイライト表示 します。 [F3] (A·EARTH).....アルカリ土類金属 (Alkaline Earth Metals)を ハイライト表示します。 FAI(HALOGEN)ハロゲン (Halogens) をハイライト表示します。 F5 (N•GAS)希ガス (Noble Gases) をハイライト表示しま す。 [F6] (R•EARTH)......希土類元素 (Rare Earth Elements) をハイライ ト表示します。 子配置、原子量を Spreadsheet モードに保存 します。 します。

F5 (SEARCH	I)F1(NAME)	. 元素名の検索ダイアログを表示します。
	F2 (SYMBOL)	. 元素記号の検索ダイアログを表示します。
	F3 (No.)	. 原子番号の検索ダイアログを表示します。
	F4 (WEIGHT)	. 原子量の検索ダイアログを表示します。
F6 (DETAIL)	(または 匪)	. カーソルで選択した元素の詳細表示画面(3-5 ページ) になります。(ランタノイドまたはアク チノイドが選択されている場合は、詳細表示画面 になりません。)
(EXIT)		. 周期表画面に戻ります。

• 元素名の検索

- 1. 周期表画面で EB (SEARCH) EI (NAME) と押します。
 - •元素名の検索ダイアログが表示されます。

- 2. 元素名を入力します (9 文字まで)。
 - あてはまる元素名が原子番号順に表示されます。
- 3. (④) を押して元素名を選択します。
- 4. 図を押すと、周期表画面に戻り、選択した元素にカーソルが移動します。
- ・該当する元素がない場合は、"Nothing"と表示されます。
- EXIT を押すと、ダイアログを閉じて、周期表画面に戻ります。
- á、é などの綴り字記号がついた文字は、綴り字記号を除いたアルファベットで検索します。中国語はピンイン(拼音)を元にして検索します。

• 元素記号の検索

- 1. 周期表画面で F5 (SEARCH) F2 (SYMBOL) と押します。
 - •元素記号の検索ダイアログが表示されます。

1 2 3 4 5 6 7 8 0 10 11 12 13 14	15 16 17	18
Search		2 H 10 N 18 H
⁴ H 1.008		KP SY Xe Bb
THE 4.002602 *LLi 6.94		119 71 Lu
*** Be 9.0121831	\downarrow	109
		1

- 2. 元素記号を入力します(9文字まで)。
 - あてはまる元素の元素記号と原子量が、原子番号順に表示されます。

- 3. (④) ⑦を押して元素記号を選択します。
- 4.
 図を押すと、周期表画面に戻り、選択した元素にカーソルが移動します。

3-3 周期表

- ・該当する元素がない場合は、"Nothing"と表示されます。
- EXIT を押すと、ダイアログを閉じて、周期表画面に戻ります。

• 原子番号の検索

- 1. 周期表画面で F5 (SEARCH) F3 (No.) と押します。
 - 原子番号の検索ダイアログが表示されます。

- 2. 原子番号を入力します(数字3桁まで)。
- 3.
 図を押すと、周期表画面に戻り、入力した原子番号の元素にカーソルが移動します。
- 一致する原子番号がない場合は、ダイアログを閉じて周期表画面に戻ります。カーソル 位置は変わりません。
- EXIT を押すと、ダイアログを閉じて、周期表画面に戻ります。

• 原子量の検索

- 1. 周期表画面で F5 (SEARCH) F4 (WEIGHT) と押します。
 - 原子量の検索ダイアログが表示されます。

2. 原子量を入力します(数字と小数点で9桁まで)。

• あてはまる元素の元素記号と原子量が、原子番号順に表示されます。

- 3. (④) (〒) を押して元素記号を選択します。
- 4.
 図を押すと、周期表画面に戻り、選択した元素にカーソルが移動します。
- ・該当する原子量がない場合は、"Nothing"と表示されます。
- EXIT を押すと、ダイアログを閉じて、周期表画面に戻ります。

• 周期表のデータを Spreadsheet モードに保存する

- 1. 周期表画面で F3 (ALL) F1 (STORE) と押します。
 - •ファイル名入力の画面になります。

2. ファイル名を入力して、 EEE を押します。

メモ

Spreadsheet モードには、以下のデータが保存されます。 A 列:原子番号(1から118までの数値) B 列:元素記号 C 列:電子配置 D 列:原子量(詳細表示画面で修正した値)

RadNorm1 d/cRealPHYSIUM				M		
PHY	А	В	С	D		
1	1	н	ls	1.008		
2	2	He	1s²	4.0026		
3	3	Li	[He]2s	6.94		
4	4	Be	[He]2s²	9.0121		
5	5	В	[He]2s ² 2	10.81		
	1					
FILE	FILE EDIT DELETE INSERT CLEAR D					

• 原子量の値を初期値に戻す

1. 周期表画面で F3 (ALL) F2 (INITIAL) と押します。

次のメッセージが表示されます。

Init Al	l Atomic
We	ight Data?
Yes∶	[F1]
No :	[F6]

2. F1(Yes)を押します。

■ 拡大表示画面

カーソル

~	\rightarrow						
	1	2	3	4	5	6	7
1	ΥĤ						
2	[®] Li	i "Be					
3	'' Na	a ¹⁸ Mg					
4	¹⁹ K	°° Ca	°' Sc	iT ^{ss}	28 V	ª Cr	^{as} Mn
5	^{a7} Rk	o [™] Sr	** Y	[™] Zr	" Nb	ч ^а Мо	" Тс
6	⁵ Cs	s [≋] Ba	L*	[™] Hf	™ Ta	⁷⁴ ₩	⁷⁵ Re
				NORM	4L	D	etail,

- 周期表を拡大して表示します。
- 🛆 🕤 🕙 で、カーソルが移動します。

F4 (NORMAL) (または EXTT) …. 周期表画面に戻ります。

F6 (DETAIL) (または ឈ) カーソルで選択した元素の詳細表示画面になります (3-5 ページ参照)。L * または A * を選択している 場合は、ランタノイド画面またはアクチノイド画面 になります。

● ランタノイド、アクチノイド (Lanthanoids、Actinoids) 画面

E Lanthanoids		Actinoids
⁸⁷ La ⁵⁶ Ce ⁵² Pr ⁵⁰ Nd ⁵¹ Pm ⁶² Sm ⁵³ Eu ⁶⁴ Gd ⁶⁵ Tb ⁶⁵ Dy ⁵⁷ Ho ⁶⁶ Er ⁶³ Tm ⁷⁰ Yb ⁷¹ Lu	ŊŊ	⁸⁹ Ac ⁹⁰ Th ⁹¹ Pa ⁹² U ⁹³ Np ⁹⁴ Pu ⁹⁵ Am ⁹⁵ Cm ⁹⁷ Bk ⁹⁶ Cf ⁹⁹ Es ¹⁰⁰ Fm ¹⁰¹ Md ¹⁰² No ¹⁰⁹ Lr

- ・拡大表示画面で、L*またはA*を選択して、F6(DETAIL)(または 図)を押すと、ランタノイド画面またはアクチノイド画面になります。

■ 詳細表示画面

周期表画面または拡大表示画面で、F6(DETAL)(または EE)を押すと、選択している元素の詳細表示画面になります。

- 詳細表示画面では、元素の原子番号、元素記号、元素名、性質、電子配置、原子量、元素のイメージ画像を表示します。
- 原子量が [] で囲まれているものは同位体のうち、よく知られた元素の原子量です。この 元素名の後ろには * が付きます。

F1 (EDIT)	原子量の値を訂正します。
-----------	--------------

- [72] (STORE)......原子量の値を変数メモリーに保存します。
- F3 (INITIAL).....原子量の値を初期値に戻します。
- [F6(1⇔[1]).....原子量の表示形式を切り替えます。

• 原子量の値を訂正する

- 1. F1(EDIT)を押します。
 - ・原子量の訂正状態になります。

Weight:4.002602

- 2. 原子量の値を入力します。
 - ・原子量には、数字と小数点のみを 12 桁まで入力できます。
- 3.
 区 を押します。
 - •入力した値が保存されます。
 - F3 (INITIAL) を押すと、原子量の値が初期値に戻ります。

• 原子量の値を変数メモリーに保存する

- 1. F2 (STORE) を押します。
 - "Store Alpha Mem." ダイアログボックスが 表示されます。
- 2. 値を保存する変数メモリーの文字を入力します。
- 3. 匪を押します。

• 原子量の表示形式を切り替える

- 1. 〒6(1⇔[1])を押します。
 - F6(1⇔[1])を押すたびに原子量の値を[]で囲む表示と、囲まない表示に切り替わります。

2 He		2 He
Helium 🦰		Helium*
Non-Metal		Non-Metal
Noble Gas		Noble Gas
1s ²		1s ²
Used in balloons.		Used in balloons.
	[F6] (1⇔[1])	
Weight:4.002602		Weight:[4.002602]
EDIT STORE [INITIAL] [1⇔[1]]		[EDIT]STORE[INITIAL] [1⇔[1]]

・原子量の値を[]で囲む表示にすると、元素名の後ろに * が表示されます。

Store Alpha Mem. [A~Z]:|

4 物理定数

■ 分野選択画面

Physical Constants 1:Universal 2:Electromagnetic 3:Atomic & Nuclear 4:Physico-Chemical 5:Adopted Values 0:My Drawer

■ 搭載している定数

• 下記の定数が搭載されています。

分類	定数	定数値
普遍定数	C:真空中の光速	299792458
	μο: 真空の透電率	1.2566370614E-6
	εο: 真空の誘電率	8.854187817E-12
	Zo:真空のインピーダンス	376.730313461
	G: 万有引力定数	6.67408E-11
	h : プランク定数	6.62607004E-34
	ト : ディラック定数	1.0545718E-34
	m₀: プランク質量	2.17647E-8
	Ⅰ₀: プランク長	1.616229E-35
	t _o :プランク時間	5.39116E-44
電磁気学定数	e:電気素量	1.6021766208E-19
		2.067833831E-15
	Go:コンダクタンス量子	7.748091731E-5
	K」: ジョセフソン定数	4.835978525E14
	Rκ : フォン・クリッツィング定数	25812.8074555
	μ ^B :ボーア磁子	9.274009994E-24
	μΝ:核磁子	5.050783699E-27

分類	定 数	定数値
原子核物理学定数	α:微細構造定数	7.2973525664E-3
	R∞: リュードベリ定数	10973731.568508
	ao:ボーア半径	5.2917721067E-11
	me:電子の質量	9.10938356E-31
	μe:電子の磁気モーメント	-9.28476462E-24
		1.883531594E-28
	μ _μ :ミュー粒子の磁気モーメント	-4.49044826E-26
	m _τ :タウ粒子の質量	3.16747E-27
	m _p :陽子の質量	1.672621898E-27
	μ _p :陽子の磁気モーメント	1.4106067873E-26
	mn:中性子の質量	1.674927471E-27
	μ ո: 中性子の磁気モーメント	-9.662365E-27
物理化学定数	№ : アボガドロ定数	6.022140857E23
	m□:原子質量単位	1.66053904E-27
	F:ファラデー定数	96485.33289
	R: 気体定数	8.3144598
	k:ボルツマン定数	1.38064852E-23
	Vm:理想気体のモル体積 (273.15 K, 100 kPa)	0.022710947
	σ:シュテファン - ボルツマン定数	5.670367E-8
協定値	К」-90:ジョセフソン定数の協定値	483597.9
	R _{K-90} :フォン・クリッツィング定数の 協定値	25812.807
	gn:標準重力加速度	9.80665

4-2 物理定数 4-3 物理定数

■ 定数一覧画面

Un i	versal
с	=299792458
μο	=1.25663706e-6
8 0	=8.8541878e-12
Zo	=376.7303135
G	=6.67408e-11
h	=6.62607e-34 ↓
EDIT	STORE DETAIL KEEP (INITIAL ALL-INIT

- ・ 定数を「記号=数値」のように表示します。
- 🛆 🕤 を押すとカーソルが移動して、定数が選択されます。

F1 (EDIT)......選択した定数を訂正します。(数字キーを押しても選択した定数の訂正になります。)

- [2] (STORE)......選択した定数を変数メモリーに保存します。
- F3 (DETAIL) (または 図)…選択した定数の詳細ダイアログを表示します。
- [4] (KEEP)......選択した定数を My Drawer (お気に入り)に保存します。
 - F4 (KEEP) を押すと "Complete!" メッセージが出ま す。 EXIT を押してメッセージを閉じます。
- **F5** (INITIAL)......選択した定数の値を元の数値に戻します。

[37]分類選択画面に戻ります。

■ My Drawer (お気に入り) 画面

<mark>₿</mark> Mv	Drawer	
с	=299792458	
μο	=1.2566370	6e-6
8 0	=8.8541878	е-12
	STURE DE TAIL	DELETE

・定数一覧画面で、「四(KEEP)を押すと、選択した定数が My Drawer(お気に入り)画面 に保存されます。(保存した順に表示します。)

12 (STORE)......選択した定数を変数メモリーに保存します。

F3 (DETAIL) (または 20)…選択した定数の詳細ダイアログを表示します。

F6 (DELETE)......選択した定数を My Drawer (お気に入り) から削除します。

[37]分類選択画面に戻ります。

■ 定数を訂正する

- 1. 訂正する定数を選択して FI(EDIT)を押します。
 - ・定数の訂正状態になります。

Un i	versal	
с	= 299792458	
μο	=1.25663706e-6	
8 0	=8.8541878e-12	
Zo	=376.7303135	
G	=6.67408e-11	
h	=6.62607e-34	_↓

- 2. 定数を訂正します。
- 3. 厩を押します。
- 訂正された定数が保存されます。
- 15 桁以上入力した場合でも、記憶される有効桁数は 15 桁になります。
- ・ 定数の編集状態で入力が正しくない場合は、エラー (Syntax ERROR) になります。
- ・ 定数の編集状態で入力が数学的におかしい場合は、エラー (Ma ERROR) になります。

■ 定数を変数メモリーへ保存する

- 1. 変数メモリーに保存する定数を選択して F2 (STORE)を押します。
 - ・保存ダイアログが表示されます。

- 2. 保存する定数をアルファベットで入力します(1文字)。
- 3. 匪を押します。
- ・ Run-Matrix モードで変数メモリーを呼び出すと、保存した定数の値が入力されます。

■ 詳細ダイアログ

- 定数を選択して **13** (DETAIL) または EEE を押すと、詳細ダイアログが表示されます。
- 定数の名称、記号、単位を表示します。

■ すべての定数を元の数値に戻す

・定数一覧画面で、F6(ALL·INIT)を押すと、Init All ダイアログが表示されます。

• F1 (Yes)を押すと、定数一覧画面にあるすべての定数の値を元の数値に戻します。

5-1 eActivity から Physium を呼び出す

5 eActivity から Physium を呼び出す

eActivity では Physium ストリップを入力して、Physium を呼び出すことができます。

ここでは、Physium ストリップの挿入方法、Physium ストリップの使い方を説明します。 eActivity についての詳細は、電卓のソフトウェア取扱説明書「第 10 章 eActivity (電子 教材)」を参照してください。

■ eActivity ファイルに Physium ストリップを挿入するには

以下の操作では Physium ストリップを挿入する eActivity ファイルがすでに開いているとします。新規ファイルの作成やファイルの基本操作については、電卓のソフトウェア取扱説明書「3. eActivity ファイルの操作」(10-4 ページ)を参照してください。

• eActivity ファイルに Physium ストリップを挿入するには

- eActivity の作業画面で、Physium ストリップを挿入する位置にカーソルを移動させます。
- 2. F2 (STRIP) を押します。
 - 挿入可能なストリップの一覧がポップアップ表示されます。

3. < 🕤 を押して、Physium ストリップを選択します。

- 4. 厩を押します。
 - ストリップがカーソルの1行手前またはカーソルが ある行に挿入されます。

E Red Norm] d/c Real PHYSIUM IIIII FILE STRIP INSERT CHAR A⇔a ▷

5. ストリップのタイトルを 16 文字以内で入力します。

5-2 eActivity から Physium を呼び出す

6. 図を押すと、ストリップのタイトルが確定されます。

RadNorm1 d/c)Real PHYSIUM
Physium iiii
FILE STRIP INSERT CHAR A⇔a >

- •ストリップが選択された状態となります。
- ここで 📧 を押すとストリップを実行します。ストリップを実行する手順は、次の「ス トリップから Physium を呼び出すには」を参照してください。

■ ストリップから Physium を呼び出すには

ここでは、eActivity ファイルに挿入した Physium ストリップの操作について説明します。 以下の手順では実行できる Physium ストリップを挿入した eActivity ファイルがすでに開 いているとします。

1. eActivity の作業画面で、 (④) ⑦ を押して Physium ストリップを選択します。

RadNorm1 d/cReal	
Physium	Η.
FILE STRIP INSERT CHAR Ata	

- 2. 厩を押します。
 - Physium が呼び出され、Physium の最初の画面が表示されます。

- 3. [Physium の起動方法] (2-1 ページ) の手順3からの操作を行います。
- 4. eActivity の作業画面に戻るには、 Smf → (音)を押します。

• Physium ストリップのメモリー容量についての注意

• ストリップのメモリー消費量については、電卓のソフトウェア取扱説明書「ストリップメ モリー使用画面を表示するには」(10-17ページ)を参照してください。

6 注意事項

- Physium の各画面、ダイアログを表示中に、画面のキャプチャーができます。(詳細は、 電卓のソフトウェア取扱説明書「第1章 9. 画面キャプチャー機能を使う」を参照して ください。)
- ・電卓に搭載されているカタログ機能は、Physium では使えません。
- 原子量は、2015年のIUPAC (International Union of Pure and Applied Chemistry)を元にしています。
- 電子配置は、CRC Handbook of Chemistry and Physics 91st Edition を元にして います。
- ・物理定数は、2014年の CODATA を元にしています。
- 周期表、物理定数の表記や値は、年や書籍によって若干の違いがあります。ご使用の前 に目的にあった資料を参照してください。
- 土類金属の分類は、アメリカで代表的な教科書または雑誌に記載のものと多少異なる場合があります。
- 遷移元素の分類は、アメリカで代表的な教科書または雑誌に記載のものと多少異なる場合があります。
- Physium アプリケーションを最新バージョンにアップデートしても、原子量と物理定数を訂正している場合は、その値を保持します。最新の値にするには、次の操作で原子量と物理定数を初期値に戻してください。
 - 周期表画面で、F3(ALL)F2(INITIAL)F1(Yes)と押す。
 - 定数一覧画面で、F6 (ALL·INIT) F1 (Yes) と押す。

元素名	著作権
水素	© ordus - Fotolia.com
ヘリウム	© Elenathewise - Fotolia.com
リチウム	© Coprid - Fotolia.com
ベリリウム	© travis manley - Fotolia.com
炭素	© Paylessimages - Fotolia.com
窒素	© Stefan Körber - Fotolia.com
酸素	© Kor_Alex - Fotolia.com
フッ素	© philippe Devanne - Fotolia.com
ネオン	© Akasha+ - Fotolia.com
ナトリウム	© davide tesoriero - Fotolia.com
マグネシウム	© Aviator70 - Fotolia.com
アルミニウム	© StudioAraminta - Fotolia.com
ケイ素	© wolandmaster - Fotolia.com
リン	© Swettlana Gordacheva - Fotolia.com
硫黄	© Alexander Mandl - Fotolia.com
塩素	© L. Shat - Fotolia.com
アルゴン	© uhotti - Fotolia.com
カリウム	© Stefan Körber - Fotolia.com
カルシウム	© Birute Vijeikiene - Fotolia.com
スカンジウム	© Melinda Nagy - Fotolia.com
チタン	© christian42 - Fotolia.com
バナジウム	© Thomas Reimer - Fotolia.com
クロム	© sav_a - Fotolia.com
マンガン	© cardiae - Fotolia.com
鉄	© Novydel - Fotolia.com
コバルト	© SpbPhoto - Fotolia.com
ニッケル	© John Sfondilias - Fotolia.com
銅	© effe45 - Fotolia.com
亜鉛	© ibphoto - Fotolia.com
ガリウム	© Ron-Heidelberg - Fotolia.com
ゲルマニウム	© Dario Sabljak - Fotolia.com
セレン	© Konstantin Shevtsov - Fotolia.com
臭素	© Rade Cojbasic - Fotolia.com
クリプトン	© Morad HEGUI - Fotolia.com
ストロンチウム	© jonnysek - Fotolia.com
イットリウム	© Jean-Philippe Capart - Fotolia.com
ジルコニウム	© Hiro - Fotolia.com
ニオブ	© Alexandr Blinov - Fotolia.com
モリブデン	© vnlit - Fotolia.com

元素名	著作権
ルテニウム	© DeVIce - Fotolia.com
ロジウム	© Pix by Marti - Fotolia.com
パラジウム	© Pix by Marti - Fotolia.com
銀	© Zee - Fotolia.com
カドミウム	© Florian Ertl - Fotolia.com
インジウム	© 263 - Fotolia.com
スズ	© dvs71 - Fotolia.com
アンチモン	© Andrew Barker - Fotolia.com
テルル	© fotografiche.eu - Fotolia.com
ヨウ素	© Aleksandr Bedrin - Fotolia.com
キセノン	© Eimantas Buzas - Fotolia.com
セシウム	© John Tomaselli - Fotolia.com
バリウム	© Jim Parkin - Fotolia.com
ランタン	© Tyler Olson - Fotolia.com
セリウム	© photoiron - Fotolia.com
プラセオジム	© Dario Bajurin - Fotolia.com
ネオジム	© Igor Tarasov - Fotolia.com
サマリウム	© ケンジ - Fotolia.com
ユウロピウム	© wrangler - Fotolia.com
ガドリニウム	© khz - Fotolia.com
テルビウム	© Dragan Radojkovic - Fotolia.com
ジスプロシウム	© jonnysek - Fotolia.com
ホルミウム	© beerkoff - Fotolia.com
エルビウム	© Kitch Bain - Fotolia.com
ツリウム	© Nomad_Soul - Fotolia.com
イッテルビウム	© Dmitrijs Gerciks - Fotolia.com
ルテチウム	© Viktor - Fotolia.com
タンタル	© Elridge - Fotolia.com
タングステン	© Sylvie Thenard - Fotolia.com
レニウム	© zmkstudio - Fotolia.com
オスミウム	© Ilandrea - Fotolia.com
イリジウム	© MACLEG - Fotolia.com
白金	© Soul Concept - Fotolia.com
金	© Paylessimages - Fotolia.com
水銀	© marcel - Fotolia.com
鉛	© dabjola - Fotolia.com
ビスマス	© Tommy - Fotolia.com
ラドン	© TOMO - Fotolia.com
ウラン	© philipus - Fotolia.com

• 元素のイメージ画像の著作権は下記に帰属します。

CASIO.

カシオ計算機株式会社

〒 151-8543 東京都渋谷区本町 1-6-2

SA1709-E © 2013 CASIO COMPUTER CO., LTD.